
1. INTRODUCTION 

Rock blasting is a highly effective technique employed 
for fracturing and moving rock mass with extensive 
applications in various fields such as mining, quarrying, 
tunneling, and civil engineering industries. The 
understanding of rock behaviors during blasting is critical 
for optimizing blasting design, reducing material loss 
and/or dilution, as well as minimizing environmental 
impact and safety hazards. While it is difficult to quantify 
rock blasting experimentally, numerical simulation 
approaches have been developed over the years to model 
the process. However, simulating rock blasting is still a 
challenging and computationally demanding task. One of 
the main challenges lies in the complex physical 
processes that occur during blasting, including non-ideal 
detonation, near-field rock crushing, fracturing, vibration, 
ore/waste movement, and muckpile formation. 
Simulating rock blasting movement is further 
complicated by the intrinsic heterogeneity of rock 
materials and variability in blasting conditions, which 
result in highly nonlinear and discontinuous behaviors. 
Moreover, the wide range of length and time scales 
involved in these sub-processes presents a significant 
computational burden. 

Different numerical approaches have been developed to 
address these challenges. Continuum-based numerical 
methods, such as the Finite Element Method (FEM) and 
Finite Volume Method (FVM), primarily concentrate on 
the damage created by blasting before major 
fragmentation or the impacts of vibration and stress 
redistribution after blasting (Lu et al., 2011; Wang et al., 
2021). While these mesh-based approaches can handle 
complex geometries and properties by meshing domains 
using finer resolution, they assume materials behave in a 
continuous manner and are not well-suited to directly 
model crack propagation and rock fragmentation during 
rock blasting. The large deformation and fragmentation 
rocks can be better simulated using discontinuum-based 
methods, such as Discrete Element Method (DEM) and 
Discontinuous Deformation Analysis (DDA), which can 
explicitly represent rock fragments and account for the 
discontinuous nature of rock materials (Furtney & 
Aglawe, 2021; Potyondy et al., 2020; Potyondy & 
Cundall, 2004). In recent years, there have been attempts 
to combine different methods to simulate the blasting 
process, including the continuum phase focusing on the 
near-field blasting-induced damage, and the 
discontinuum phase focusing on the rock fragment 
displacement and muckpile formation (An et al., 2017; 
Fakhimi & Lanari, 2014; Onederra et al., 2013). 
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ABSTRACT: Estimating and optimizing rock movement during blasting is important to prevent unnecessary material handling, 
reduce ore loss and dilution, and minimize environmental footprint. It has been challenging and computationally burdensome to 
model the whole dynamic process because rock blasting consists of a complex process that generally involves explosive detonation, 
gas expansion, stress wave propagation, rock fragmentation and throw, and muckpile formation. In this regard, we propose a hybrid 
approach that captures the first-order impacts on the rock movement due to blasting while achieving accelerated simulation. 
Specifically, a small-scale continuum model is established to represent an annulus of rock, with explosive in the center and gas 
pressure resulting from the detonation applied to the borehole surface, which reduces as the borehole deforms. The continuum model 
simulates the early-stage, near-field rock blasting process and forms a synthetic dataset based on realistic explosive data to train a 
machine learning model. Key parameters, such as expanded hole diameter, burden velocity, and time-dependent gas pressure, are 
readily obtained from the constructed machine learning model. Informed by the machine learning model, the subsequent 
discontinuum model simulates the dynamic rock movement and predicts the muckpile formation in the far field using the rolling 
resistance contact model. Our results demonstrate the efficacy of the proposed approach to capture the key physics of blast-induced 
rock movement and realize accelerated blast design optimization aided by machine learning. 

 

 

 



However, such simulations require intensive 
computational resources, which can limit the scale and 
accuracy of the simulations, as well as applicability to 
practical engineering designs. 

To overcome the limitations, a hybrid approach has been 
proposed that combines simplified numerical models with 
machine learning techniques. This approach involves 
using a small-scale FLAC3D  model (Itasca, 2019) to 
simulate the early-stage, near-field rock blasting process 
and generating a synthetic dataset based on realistic 
explosive data to train a machine learning model. The 
machine learning model can then predict critical 
simulation parameters, such as the burden velocity 
resulting from expansion and pressurization, which are 
used to inform the subsequent PFC3D model (Itasca, 
2023). The PFC3D model mimics the rock mass with 
distinct particles governed by the rolling resistance 
contact model and resolves the dynamic rock movement 
and muckpile formation in the far field. The hybrid 
approach offers significant computational savings while 
retaining the essential physics of blast-induced rock 
movement. 

 

2. MODEL OVERVIEW 

The hybrid approach to simulating rock blasting involves 
the integration of three components: 

 A 1D FVM model (FLAC3D), which represents the 
detonation along with the elastic and plastic 
deformation occurring in the rock near the explosive. 
The model resolves the equilibrium pressure and the 
size of the hole when the pressure of the reaction 
products is balanced by the deformation in the rock 
near the hole.  

 A machine learning model, which is trained on a 
synthetic dataset generated by FLAC3D simulations 
and an analytical model to estimate the burden 
movement velocity, taking into account factors such 
as gas pressurization and venting during burden 
acceleration. 

 A 3D DEM model (PFC3D), which simulates the 
rock mass using particles with rolling resistance and 
resolves rock movement and final muckpile shape, 
with the burden velocity initialized based on the 
machine learning model. 

 

3. CONTINUUM MODELING  

FLAC3D utilizes an explicit finite volume formulation 
that captures the complex behaviors of a continuous three-
dimensional medium as it reaches equilibrium or steady 
plastic flow. Here, small-scale 1D axisymmetric FLAC3D 
models are built in dynamic mode with a Mohr-Coulomb 

constitutive model to describe the near-field rock 
response during blasting. The rock is represented as a 
cylindrical annulus that is 11 m in diameter with the 
explosive in the center. An example of the small-scale 
model is presented in Fig. 1.  An axisymmetric geometry 
is created by applying roller boundary conditions to the 
top and bottom surfaces of a 2D wedge, which represents 
1/32nd of a circle. To predict the product equation of state 
(EoS), velocity of detonation (VoD), and heat of reaction 
for common explosive products like ANFO and emulsion, 
a non-ideal detonation program (Braithwaite & Sharpe, 
2009) and realistic explosive data are utilized. In the 
FLAC3D model, the borehole is pressurized at a rate 
determined by the VoD, and the borehole gas pressure is 
applied to the inside surface of the borehole. As the 
borehole undergoes radial deformation, the applied gas 
pressure is reduced based on the EoS. A more detailed 
description is given in Furtney et al. (2013). This model 
accounts for both elastic and plastic deformation in the 
rock and assumes the gas products expand isentropically.  

  

 
 
Fig. 1. 1D axisymmetric FLAC3D model. The plots show color 
contours of radial stress (top) and velocity magnitude (bottom) 
in the rock during blasting, the blast induced stress wave can be 
seen near the right boundary (updated after Furtney et al., 
2022). 

As the rock is loaded by the explosive gas, the nearest 
rock to the borehole experiences compressive hoop 
stresses and undergoes plastic failure. The model is 
executed for a duration equivalent to 90% of the time 
taken by a p-wave to travel from the blast hole to the 
external boundary of the model. Over this time interval, 
the gas pressure and local rock stress reach a quasi-steady 
state before significant radial tensile fracturing or radial 
gas flow takes place. The pressure at this state is defined 
as the equilibrium pressure, which serves as the initial 
state for predicting burden movement using machine 
learning in the next phase. This model is intended to only 
represent processes between detonation and the 



equilibrium pressure state. It is worth noting that the time-
dependent fracturing process occurs between the 
equilibrium state and the beginning of burden movement, 
which is deliberately not considered in this modeling to 
maintain model simplicity to generate a large synthetic 
dataset. 

 

4. MACHINE LEARNING MODEL 

The application of machine learning in rock mechanics 
simulations has become increasingly popular due to its 
potential to improve the efficiency of numerical 
simulations and recognize patterns of nonlinear behaviors 
of rocks when trained on large datasets.  Typically, in the 
geomechanics field, we face a scarcity of data, which 
limits our ability to develop accurate models. To 
overcome this limitation, surrogate models trained on 
synthetic data generated by numerical models have 
proven to be an effective solution. These surrogate 
models can predict the outputs of complex models for a 
wide range of input parameters with high computational 
efficiency (Furtney et al., 2022). 

With the equilibrium pressure and final borehole diameter 
results from the near-field FLAC3D models, the burden 
velocity can be estimated through an analytical model 
established for burden movement calculation. The 
analytical model considers the expansion work done by 
gas products and gas venting through blast-induced 

fractures and the stemming pore space. The results of the 
FLAC3D model and the analytical model are then used to 
train a surrogate model to predict the burden movement 
velocity (Furtney et al., 2013). A neural network with 
three hidden layers, each comprising seven nodes, was 
trained using an extensive dataset of 10,000 FLAC3D 
model runs. The open source scikit-learn multi-level 
perceptron regressor model was used. All the nodes have 
hyperbolic tangent activation and the network is fully 
connected. The L-BFGS solver is used for the standard 
back propagation training. No hyperparameter tuning was 
done in this case, experience with similar work informed 
the choices for layer sizes and activation functions.  The 
training dataset includes a range of critical features, 
including explosive type, modulus, UCS, hole radius, 
bench height, burden, and explosive charge length, while 
the regression targets are equilibrium pressure, burden 
velocity, and crushed zone radius. The resulting neural 
network can predict the burden velocity required for the 
subsequent DEM simulations within a fraction of a 
second to good accuracy. The burden velocity prediction 
has an r2 value of 0.9997. The predictions for burden 
velocity are within 2.5% of the true value 95% of the time. 
Fig. 2 shows the model learning curve, model error 
histogram, and predicted vs actual plots. The final image 
in Fig. 2 shows a web application developed to perform 
the machine learning predictions. The application can be 
accessed here: https://jkfurtney.github.io/ml_blasting/

 

(d)  

Fig. 2.  a) Learning curve, b) error histogram, c) predicted vs 
actual velocity plots, and d) web application.  

 

5. DISCONTINUUM MODELING  

The PFC program provides a general purpose, distinct-
element modeling framework that can simulate the 
movement and interaction of finite-sized particles (e.g., 
disk with unit thickness in 2D, sphere in 3D). The 
particles are rigid bodies with finite mass that move 
independently of one another. These particles interact 
with one another through pairwise contacts that generate 
internal forces and moments. Synthetic material can thus 
be formed by an assembly of rigid grains that interact at 
contacts. In the context of rock blasting, the angular shape 
of fragmented rock prevents the fragments from rotating 
easily, leading to interlocking behavior within the rock 
mass, while discrete element models like PFC3D use 
spherical elements that rotate readily. Instead, to simulate 



rock movement during blasting, a rolling resistance linear 
model was implemented in PFC3D to account for the 
energy dissipation that occurs due to rolling resistance at 
the contacts between particles representing the fragments. 
The rolling resistance contact model incorporates a torque 
acting on the contacting pieces to counteract the rolling 
motion (Ai et al., 2011; Wensrich & Katterfeld, 2012). 
The behavior of the rolling resistance linear contact model 
is similar to the linear model, except that the internal 
moment is incremented linearly with the accumulated 
relative rotation of the contacting pieces at the contact 
point.  The contact model was implemented at both ball-
ball contacts and ball-wall contacts.  

PFC3D models were constructed to simulate rock casting 
and muck pile formation, with the initial velocity of rock 
fragmentation obtained from the machine learning 
prediction. Table 1 shows a few key parameters that 
define the contact model. A comprehensive description of 
all parameters of the rolling resistance linear contact 
model is available in the PFC documentation (Itasca, 
2021). Note that the Young’s modulus is set to a value 
that is smaller than normal to optimize the simulation 
timestep. This value is sufficient to ensure that the system 
remains within the rigid grain limit (i.e., further 
increasing the modulus/contact stiffness would not 
significantly affect the results). The relatively high 
friction coefficient and rolling friction coefficient were 
used to enhance particle friction and interlocking, which 
can be verified by comparing with field measurements 
and laboratory experiments.  

6. MODELING RESULTS 

A PFC3D model was developed to simulate the rock 
movement and muckpile formation in a bench blasting 
scenario using an echelon pattern for inter-hole and inter-
row delay. The bench was created using PFC balls with a 
mean diameter of 0.2 m and a relative deviation of 0.5 to 
account for rock fragmentation with varying sizes. The 
rolling resistance model was applied to both ball-ball 
contacts and ball-wall contacts. The model consisted of 
~400,000 balls with a density of 2600 kg/m3 (as shown in 
Fig. 3).  

The focus of the DEM model is to simulate the rock 
movement and muckpile formation. Rock fragmentation 
is assumed to be completed and the initial velocity of the 
balls is obtained from the machine learning model. The 
bench has dimensions of 84 m × 24 m × 12.5 m, and the 
regions to be blasted are indicated by colored blocks in 
plan view in Fig. 4. The bench is placed on a flat surface 
and faces a simplified 30-degree slope, which is simulated 
using a PFC wall and represents the slope of an existing 
pile. It is worth noting that the bench geometry and slope 
angle are designed to be representative of a typical bench 

blasting scenario and can be readily modified to suit 
different blasting conditions. 

 

 
Fig. 3. PFC model showing the bench to be blasted. 

  
Fig. 4. Echelon pattern implementation in the PFC model, plan 
view. 

 

Fig. 5. Echelon pattern, numbers indicate firing sequence. 

Table 1. Key parameters of the contact model 

Parameters Unit Value 
Nominal Young's modulus Pa 1e7 

Normal-to-shear stiffness ratio - 2 
Friction coefficient - 0.5 

Rolling friction coefficient - 0.5 
 

The blast volume in the simulation was divided into 
smaller groups with a burden and spacing of 3 m. An 
echelon pattern was used with a delay time of 30 
milliseconds assumed for neighboring blocks (see Fig. 5). 



The velocity was applied to the groups during the 
simulation at time 𝑇௜ = 𝑇଴ + 𝑖 ∗ ∆𝑇, where 𝑇଴ is the time 
the first group of fragmented rocks is cast due to blasting 
and ∆T is the time delay. The initial velocity of rock 
fragmentation for the simulated case was obtained from 
the machine learning model prediction, which considered 
input parameters such as explosive type, modulus, UCS, 
hole radius, bench height, burden, and spacing. The 
velocity was found to be 12.7 m/s.  

The simulation result at the end of cast blasting is shown 
in Fig. 6. Fig. 7 shows the cross-sectional view of the 
muckpile shape. The simulation indicated that the rock 
piles were generally evenly spread along the length of the 
bench. The cross-sectional view showed that the cast 
blasting movement had different behaviors, and the final 
location of the rock blocks being casted depended on their 
proximity to the free surface, with rocks near the surface 
more likely to spread. Fig. 8. shows the muckpile 
formation of another simulation case with the same 
settings but the slope facing the bench removed. The 
simulated muckpile shape agreed with the muckpile 
formation commonly observed in the field for cast 
blasting operations (Taherkhani & Doostmohammadi, 
2015). By adjusting the blasting design parameters, the 
muckpile shape could also be further optimized using the 
proposed approach in order to improve equipment access 
and minimize the environmental footprint. 
 

 

Fig. 6. Muckpile formation in the PFC model.  

Fig. 7. Muckpile formation in the PFC model, cross-section 
view.  

 

Fig. 8. Muckpile formation in the PFC model without the 
slope, cross-section view.  

7. CONCLUSIONS 

The study proposes a hybrid approach that combines a 
small-scale continuum model, a machine learning model, 
and a 3D discontinuum model to capture the key physics 
of blast-induced rock movement and predict muckpile 
formation. The continuum model simulates the early-
stage, near-field rock blasting process and forms a 
synthetic dataset based on realistic explosive data to train 
a surrogate model using an artificial neural network. The 
surrogate model is capable of achieving rapid prediction 
of the burden movement velocity, taking into account 
factors such as gas pressurization and venting during 
burden acceleration. With the burden velocity and 
geometric parameters obtained from the machine learning 
model, the 3D discontinuum model only needs to focus 
on resolving the phase of rock movement and muckpile 
formation using discrete particles with rolling resistance, 
thus achieving faster simulations.  

The proposed approach aims to provide a simplified but 
effective prediction of blast-induced rock movement by 
utilizing different numerical methods to capture the 
essential physics during the blasting process. Therefore, 
some physical effects, such as fracture propagation after 
reaching the equilibrium pressure and before the burden 
movement, are not considered in the approach. 
Additionally, the size distribution of the generated balls 
in the DEM simulations can be further improved by 
incorporating empirical fragmentation models to predict 
the expected size distribution based on rock/explosive 
properties and design variables (Cunningham, 2005). 
Despite these limitations, the hybrid approach provides a 
promising solution to the computational challenges of 
modeling the complex processes in large-scale rock 
blasting and can contribute to more efficient and cost-
effective blasting designs and operations. 
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